Chemical Communications

Number 13 1985

Synthesis from D-Glucose of 1,5-Dideoxy-1,5-imino-L-fucitol, a Potent α -L-Fucosidase Inhibitor

George W. J. Fleet,^{a*} Antony N. Shaw,^a Stephen V. Evans,^b and Linda E. Fellows^{b*}

^a Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY, U.K.

^b Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, U.K.

1,5-Dideoxy-1,5-imino-L-fucitol (1), synthesised from methyl α -D-glucopyranoside, is a potent competitive inhibitor of the hydrolysis of *p*-nitrophenyl α -L-fucopyranoside catalysed by α -L-fucosidase (*ex.* bovine epididymis) causing 50% inhibition of enzymic activity at 2.5 \times 10⁻⁸ M.

Several polyhydroxylated piperidines and pyrrolidines have been shown to be competitive inhibitors of glycosidases from many sources and are proving useful biochemical tools; several derivatives of 5-amino-5-deoxyglucose (nojirimycin) and of 5-amino-5-deoxymannose have been used as glucosidase and mannosidase inhibitors.^{1,2} To date, no compound of this class having fucosidase inhibitory activity has been described; yet glycans containing both D-fucose and L-fucose (2) are widespread in nature. In particular, α -L-fucose is the immunodominant sugar of many complex carbohydrate antigens, and the L-fucose content of some animal glycans is known to change under certain pathological conditions, such as transformation to tumorogenesis.³ Specific inhibitors of α -L-fucosidase are likely to find wide application, not only in the investigation of the structure/function relationships of fucose containing glycans, but also in understanding the pathology of inherited disorders characterised by a deficiency of α -L-fucosidase.⁴ This paper reports the synthesis of 1,5-dideoxy-1,5-imino-L-fucitol (1) from methyl α -Dglucopyranoside (3); (1) is shown to be a very potent competitive inhibitor of bovine epididymis α -L-fucosidase, but to have no inhibitory action on a range of other glycosidases.

The synthesis of (1) from (3) requires inversion of configuration at C-2 and C-3, deoxygenation of C-6, and the formation of the piperidine ring between C-1 and C-5 with inversion of configuration at C-5. The protected altrose (4), prepared from (3) by standard procedures,⁵ was benzylated [(benzyl bromide, sodium hydride, tetrabutylammonium iodide in tetrahydrofuran (THF)] to give (5), m.p. 91–92 °C (lit.⁶ 90–91 °C), in 84% yield. Hydrolysis of the benzylidene acetal by acetic acid: water (4:1) gave diol (6) which underwent selective esterification of the primary hydroxy group with toluene-*p*-sulphonyl chloride in pyridine at -20 °C to form (7),† [α]_D²⁰ +52° (*c* 0.70, CHCl₃), in 75% yield.

[†] Satisfactory spectral and/or analytical data were obtained for all new compounds.

Reduction of (7) with lithium aluminium hydride in THF to (8), followed by benzylation of the remaining free hydroxy methyl 6-deoxy-2,3,4-tri-O-benzyl-α-Dgroup, gave altropyranoside (9), $[\alpha]_D^{20} + 81^\circ$ (c 0.84, CHCl₃), in 64% yield. Hydrolysis of (9) by trifluoroacetic acid: water (4:1), followed by reducton with sodium borohydride in ethanol, gave the protected 6-deoxy-D-altritol (10), m.p. 74.5-75.5 °C, $[\alpha]_D^{20}$ +7.9° (c 0.88, CHCl₃), in 85% yield [38% yield from (4)]. Conversion into the bis(methanesulphonate) (11) [3 equiv. methanesulphonyl chloride in pyridine, 0 °C], followed by treatment with tetrabutylammonium azide in dimethylformamide (DMF) gave azidomethanesulphonate (12) in 60% yield, v_{max} 2095 cm⁻¹ (azide) and ¹H n.m.r. (CDCl₃) showing H-5 as a quartet of doublets at δ 5.1. Hydrogenation of (12) in the presence of palladium catalysts gave a mixture of products in which some hydrogenolysis of the benzyl ethers accompanied reduction of the azide; however, treatment with sodium hydrogen telluride⁷ smoothly transformed (12) directly to the required piperidine (13), $[\alpha]_{D^{20}} - 42^{\circ}$ (c 0.80, CHCl₃), in 75% yield. Removal of the benzyl protecting groups from (13) by hydrogenolysis in the presence of palladium black in ethanol gave (1); \ddagger the ¹H n.m.r. spectra of (13) in CDCl₃ and of (1) in D_2O show that both compounds are in a chair conformation.

The inhibitory action of (1) on the hydrolysis of the corresponding nitrophenyl glycopyranosides catalysed by α -glucosidase (yeast), β -glucosidase (almonds), α -galactosidase (green coffee beans), β -galactosidase (Aspergillus niger),

α-mannosidase (Jack Bean), β-xylosidase (Aspergillus niger), and α-L-fucosidase was determined.§ A concentration of (1) of only 2.5×10^{-8} M was sufficient to cause 50% inhibition of α-L-fucosidase-catalysed hydrolysis of *p*-nitrophenyl α-Lfucopyranoside; a Lineweaver–Burk plot shows that (1) is a competitive inhibitor (K_I 4.8 × 10⁻⁹ M). In contrast, none of the other enzymes was appreciably inhibited at a concentration of (1) of 5 × 10⁻⁴ M. Should this specificity be maintained over a wide range of mammalian enzymes, 1,5-dideoxy-1,5imino-L-fucitol (1) is likely to prove a research tool of exceptional usefulness.

Received, 9th April 1985; Com. 479

References

- R. C. Bernotas and B. Ganem, *Tetrahedron Lett.*, 1985, 26, 1123;
 T. Niwa, T. Tsuruoka, H. Goi, Y. Kodama, J. Itoh, S. Inouye, Y. Yamada, T. Niida, M. Nobe, and Y. Ogawa, *J. Antibiot.*, 1984, 37, 1579;
 Y. Kodama, T. Tsuruoka, T. Niwa, and S. Inouye, *ibid.*, 1985, 38, 116;
 S. V. Evans, A. R. Hayman, L. E. Fellows, T. K. M. Shing, A. E. Derome, and G. W. J. Fleet, *Tetrahedron Lett.*, 1985, 26, 1465.
- 2 S. V. Evans, L. E. Fellows, T. K. M. Shing, and G. W. J. Fleet, *Phytochemistry*, 1985, in the press.
- 3 H. M. Flowers, Adv. Carbohydr. Chem. Biochem., 1981, 39, 279.
- 4 P. R. Dorling, in 'Lysosomes in Biology and Pathology,' ed. J. T. Dingle, R. T. Dean, and W. Sly, Elsevier, Amsterdam, 1984, p. 347.
- 5 N. K. Richtmeyer, Methods Carbohydr. Chem., 1962, 1, 107.
- 6 C. L. Stevens, J. P. Dickerson, K. G. Taylor, P. Blumbergs, and P. M. Pillai, J. Org. Chem., 1975, 40, 2468.
- 7 H. Suzuki and K. Takaoka, Chem. Lett., 1984, 1733.

§ The enzymes and nitrophenyl glycopyranoside substrates were obtained from Sigma. Details of the enzyme assay procedures are given in ref. 2.

[‡] Spectroscopic data for (1): an oil, $[α]_D^{20} - 48.8$ ° (c 0.64, H₂O); $M + H^+$ 148 (NH₃-chemical ionisation); ¹H n.m.r. (300 MHz) in D₂O δ 0.94 (d, CH₃), 2.22 (dd, H_{1a}), 2.92 (dd, H_{le}), 3.55 (m, H₂), 3.32 (dd, H₃), 3.64 (m, H₄), 2.67 (qd, H₅); J(1e, 1a) 13.0, J(1a, 2) 11.0, J(1e, 2) 5.4, J(2, 3) 9.7, J(3, 4) 3.1, J(4, 5) 1.2, J(5, Me) 6.8 Hz; ¹³C n.m.r. (125 MHz) in D₂O δ 75.61 (d, CHOH), 73.06 (d, CHOH), 68.20 (d, CHOH), 53.94 (d, CHN), 49.25 (t, CH₂N), 16.70 (q, CH₃).